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SUMMARY

Numerical solutions to the Euler equations for transonic flow over

a circular cylinder indicate that the inviscid flow separates ahead of

the rear stagnation point. Our understanding of this phenomenon and

various solutions presented at a workshop on this subject are discussed.

INTRODUCTION

At high speeds, as air rushes past a circular cylinder, a pocket

of supersonic flow terminated by a recompression shock forms near the

top of the cylinder. Recent numerical calculations made by the author,

based on the inviscid Euler equations, also showed a bubble of recircu­

lating flow at the rear of the cylinder. Since separation is usually

associated with the vorticity generated at solid boundaries by viscos­

ity, its occurrence in these inviscid calculations was at first thought

to be an artifact of the numerical simulation. However, after many

careful calculations to determine the effects of the initial conditions,

the boundary conditions, and the artificial viscosity inherent in the

numerical scheme, the phenomenon appeared to be real (i.e., consistent

with the Euler equations). Further support for the validity of the

recirculating bubble as a solution of the Euler equations came from

the theoretical studies in references 1 and 2, where it was shown that

inviscid separation can occur in rotational flows as a result of the

premature retardation of the surface velocity caused by vorticity in

the flow. The vorticity in this case being generated by the recom­

pression shock. In order to gain further insight, and to have these

results independently verified, a workshop was held at NASA Langley



Research Center on September 1, 1981. The main purpose of this paper

is to review the results presented at the workshop.

RESULTS PRESENTED AT THE WORKSHOP

Of the eight presentations given at the workshop, two were in a

preliminary state of development and will not be discussed here. The

remaining six talks described the work of Mohamed Hafez of George

Washington University; Ron-Ho Ni of Pratt and Whitney; Joseph Steger

of Stanford University; Eli Turkel of Tel Aviv University, Israel;

Bram van Leer of Leiden State University, The Netherlands; and the

author (refs. 3-8). (References cited give details of the numerical

schemes used, but they do not address the problem discussed here.)

The talks concentrated on three cases corresponding to free-stream

Mach numbers (Moo) of 0.4, 0.5, and 0.6. The M = 0 400 • case corres-

ponds to the incipient formation of the supersonic bubble. This case

offers a good check on the results since the flow is still potential

and should have front and aft synwetry. All results presented for

this case showed good qualitative and quantitative agreement. However,

a slight front/aft asymmetry could be observed in the results of Ni,

Turkel, and van Leer. Figure 1 shows the streamline pattern for this

case as computed by the author and figure 2 the Mach number contours

from van Leer's calculation.

At Moo = 0.5, all calculations, except for van Leer's which was

much smaller, found a recirculating bubble of approximately a diameter

in width, see figures 3 and 4, and were in qualitative agreement. Some

quantitative differences were, however, observed at this Mach number

among the various calculations, particularly in the details of the re-

circulating bubble. For example, in figure 5 the computation by Ni
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shows the pressure within the recirculating bubble to be essentially

constant; while the author finds a substantial variation in' the

pressure in this region.

At the higher free-stream Mach number, Moo = 0.6, the calculation

of Turkel, Steger, van Leer, and the author shows a very long recir­

culating bubble, possibly extending to infinity; see figure 6. At this

Mach number the calculations of both Ni and Hafez failed to converge.

The technique used by Hafez is interesting in that it points to

the possible existence of multiple solutions satisfying the steady­

state Euler equations. Hafez solves the steady-state equations by

introducing a stream function. The resulting second-order partial

differential equation is very sinlilar to the full-potential equation

but with the vorticity acting as a source term, and it is thus solved

by standard relaxation methods. Since the vorticity divided by the

pressure is only a function of the stream function, the source term is

easily evaluated at any point downstream of the shock wave by tracing

the streamline back to the shock wave. However, for a point within

the recirculating bubble, the streamlines form a closed path and their

level of vorticity cannot be evaluated by tracing them back to the

shock. Hafez believes that this indicates the existence of multiple

solutions depending on how the level of vorticity is modeled within

the bubble. In his computations, he uses extrapolation from the region

outside the bubble to obtain the vorticity levels inside the bubble.

It should be pointed out that the other methods reported here all solve

the time-dependent Euler equations which allow for the formation of the

bubble in time without need for an explicit model of the vorticity

within.
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The drag coefficient was available from four of the calculations

reported here. In Table 1 they are compared to the drag coefficient

from a conserv~tive potential calculation. Although there is a con­

siderable spread in the values for the Euler calculations, they all

indicate a lower drag than predicted by the potential calculation.

This comes about because in the Euler calculation the shock wave occurs

ahead of the potential shock and is therefore weaker, and also because

the recirculating bubble occurring in the Euler calculations, unlike

the separation bubble in a typical viscous flow, is a region of high

near-stagnation pressure which produces thrust rather than drag.

An interesting discovery was made by Steger while performing his

calculations. Rather than limiting his computations to the upper half

plane and imposing flow symmetry along the center line, as the other

investigators did, Steger computed the full 3600 circle. For these

calculations, Steger noticed that the flow at the rear of the cylinder

oscillated, preventing convergence to a steady state. This phenomenon

has since been reproduced by Turkel and the author. In the calcula­

tions of Steger it is triggered by an inherent asyw~etry in the

approximate factorization technique used; while in the calculations

by Turkel and the author, it is necessary to introduce an asymmetry

into the initial ccnditions in order to observe it. The oscillations

are only observed for supercritical cases and seem to be sustained by

reflection of waves from the upper and lower shock waves.
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CONCLUDING REMARKS

All the evidence now available indicates that inviscid separation

is a feature of the Euler equations induced by vorticity and/or

stagnation pressure loss in the flow. The possibility of multiple

solutions suggested by Hafez and the oscillatory behavior for the fUll

circle observed by Steger need further investigation.

Further studies of this problem may shed some light in determining

the relevant Euler solution of the Navier-Stokes equation in the limit

of vanishing viscosity for separated flows, a problem which Saffman

(ref. 9) considers as one "of the challenging unsolved problems of

fluid mechanics."
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TABLE 1.- DRAG COEFFICIENT COMPUTED BY VARIOUS METHODS

Euler

Moo
Conservative

Potential
Ni Salas Steger Turkel

0.40 -0.0000 0.0124 -0.0013 0.0062 0.0033

0.50 0.3799 0.1733 -0.0041 0.1794 0.0617

0.60 1.1293 Not 0.0618 0.6066 0.1628available
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Figure 1.- Streamline pattern for Me» = 0.4 . calculated by the author.
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Figure 2.- Mach number contours for Moo = 0.4 calculated by van Leer. Notice the
slight front/aft asymmetry.



Figure 3.- Comparison of recirculation bubble shape at

10

M = 0.5.
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Figure 4.- Streamline pattern for M~ = 0.50 calculated by the
author. Sonic line shown as a dashed line.
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Figure 5.- Pressure coefficient at Moo = 0.50 computed by ~i and Salas. Results of a
, conservative potential calculation are included for comparison.
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Figure 6.- Streamline pattern for M = 0.6 calculated by the author.
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